A posteriori dual-mixed adaptive finite element error control for Lamé and Stokes equations
نویسندگان
چکیده
A unified and robust mathematical model for compressible and incompressible linear elasticity can be obtained by rephrasing the Herrmann formulation within the Hellinger-Reissner principle. This quasi-optimally converging extension of PEERS (Plane Elasticity Element with Reduced Symmetry) is called Dual-Mixed Hybrid formulation (DMH). Explicit residual-based a posteriori error estimates for DMH are introduced and are mathematically shown to be locking-free, reliable, and efficient. The estimator serves as a refinement indicator in an adaptive algorithm for effective automatic mesh generation. Numerical evidence supports that the adaptive scheme leads to optimal convergence for Lamé and Stokes benchmark problems with singularities.
منابع مشابه
A Posteriori Error Control for DPG Methods
A combination of ideas in least-squares finite element methods with those of hybridized methods recently led to discontinuous Petrov Galerkin (DPG) finite element methods. They minimize a residual inherited from a piecewise ultraweak formulation in a nonstandard, locally computable, dual norm. This paper establishes a general a posteriori error analysis for the natural norms of the DPG schemes ...
متن کاملAutomated Goal-Oriented Error Control I: Stationary Variational Problems
This article presents a general and novel approach to the automation of goal-oriented error control in the solution of nonlinear stationary finite element variational problems. The approach is based on automated linearization to obtain the linearized dual problem, automated derivation and evaluation of a posteriori error estimates, and automated adaptive mesh refinement to control the error in ...
متن کاملA Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem
The pseudostress-velocity formulation of the stationary Stokes problem allows a Raviart-Thomas mixed finite element formulation with quasi-optimal convergence and some superconvergent reconstruction of the velocity. This local postprocessing gives rise to some averaging a posteriori error estimator with explicit constants for reliable error control. Standard residual-based explicit a posteriori...
متن کاملAdaptive Finite Element Methods for Optimal Control of Elastic Waves
In this paper a posteriori error estimates for space-time finite element discretizations for optimal control problems governed by the dynamical Lamé system are considered using the dual weighted residual method (DWR). We apply techniques developed in Kröner (2011a), where optimal control problems for second order hyperbolic equations are considered. The provided error estimator separates the in...
متن کاملA Posteriori Error Estimate for Stabilized Low-Order Mixed FEM for the Stokes Equations
This paper is concerned with a stabilized approach to low-order mixed finite element methods for the Stokes equations. We will provide a posteriori error analysis for the method. We present two a posteriori error indicators which will be demonstrated to be globally upper and locally lower bounds for the error of the finite element discretization. Finally two numerical experiments will be carrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 101 شماره
صفحات -
تاریخ انتشار 2005